University of Wollongong
Browse

File(s) not publicly available

Molecular-Crowding Effect Mimicking Cold-Resistant Plants to Stabilize the Zinc Anode with Wider Service Temperature Range

journal contribution
posted on 2024-11-17, 15:28 authored by Huaizheng Ren, Sai Li, Bo Wang, Yanyan Zhang, Tian Wang, Qiang Lv, Xiangyu Zhang, Lei Wang, Xiao Han, Fan Jin, Changyuan Bao, Pengfei Yan, Nan Zhang, Dianlong Wang, Tao Cheng, Huakun Liu, Shixue Dou
Growth of dendrites, the low plating/stripping efficiency of Zn anodes, and the high freezing point of aqueous electrolytes hinder the practical application of aqueous Zn-ion batteries. Here, a zwitterionic osmolyte-based molecular crowding electrolyte is presented, by adding betaine (Bet, a by-product from beet plant) to the aqueous electrolyte, to solve the abovementioned problems. Substantive verification tests, density functional theory calculations, and ab initio molecular dynamics simulations consistently reveal that side reactions and growth of Zn dendrites are restrained because Bet can break Zn2+ solvation and regulate oriented 2D Zn2+ deposition. The Bet/ZnSO4 electrolyte enables superior reversibility in a Zn–Cu half-cell to achieve a high Coulombic efficiency >99.9% for 900 cycles (≈1800 h), and dendrite-free Zn plating/stripping in Zn–Zn cells for 4235 h at 0.5 mA cm−2 and 0.5 mAh cm−2. Furthermore, a high concentration of Bet lowers the freezing point of the electrolyte to −92 °C via the molecular-crowding effect, which ensures the stable operation of the aqueous batteries at −30 °C. This innovative concept of such a molecular crowding electrolyte will inject new vitality into the development of multifunctional aqueous electrolytes.

Funding

Australian Research Council (DP210102215)

History

Journal title

Advanced Materials

Volume

35

Issue

1

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC