University of Wollongong
Browse

Mathematical modeling and experimental verification of fluid flow through deformable rough rock joints

Download (1.83 MB)
journal contribution
posted on 2024-11-16, 08:32 authored by Buddhima Indraratna, Chandrasiri Kumara, Song-Ping ZhuSong-Ping Zhu, Scott Sloan
Rock joints exert an enormous influence on the permeability of a rock mass because they act as interconnecting networks that provide pathways for fluids to permeate and flow within the rock structure. The apertures in rock joints are irregular in nature and induce flows that cannot be described by the parallel-plate theory based on planar joints or the classical cubic flow relationships. In this study, a two-dimensional (2D) hydraulic aperture distribution was considered to develop a mathematical model for fracture flow. In this approach, the three-dimensional Navier-Stokes equation was integrated over the joint aperture and converted to an equivalent 2D flow model. The proposed model was then solved numerically by adopting a well-known algorithm for coupling the pressure and velocity and implementing it in a computer program. The selected program is capable of predicting the deformation of the joint apertures on normal loading, the resulting flow patterns, and the volumetric flow rates associated with permeability tests conducted using a high-pressure triaxial apparatus that was designed and built at the University of Wollongong. The model output for different conditions of confining stresses and hydraulic gradients was computed, and a good agreement with the experimental results was observed.

Funding

Study of Coupled Water-Gas-Sediment (three-phase) Flows through Jointed and Stratified Rock

Australian Research Council

Find out more...

History

Citation

Indraratna, B., Kumara, C., Zhu , S. & Sloan, S. (2014). Mathematical modeling and experimental verification of fluid flow through deformable rough rock joints. International Journal of Geomechanics, 15 (4), 04014065-1-04014065-11.

Journal title

International Journal of Geomechanics

Volume

15

Issue

4

Language

English

RIS ID

90715

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC