University of Wollongong
Browse

Lubrication Performance and Mechanism of Water-Based TiO2 Nanolubricants in Micro Deep Drawing of Pure Titanium Foils

journal contribution
posted on 2024-11-17, 15:36 authored by Muyuan Zhou, Fanghui Jia, Jingru Yan, Hui Wu, Zhengyi Jiang
Micro deep drawing (MDD) is a fundamental process in microforming which has wide applications in micro electromechanical system (MEMS) and biological engineering. Titanium possesses excellent mechanical properties and biocompatibility, which makes it a preferred material in micromanufacturing. In this study, eco-friendly and low-cost water-based TiO2 nanolubricants were developed and applied in the MDD with 40 μm-thick pure titanium foils. The lubricants consisting of TiO2 nanoparticles (NPs), 10 wt% glycerol, 0.1 wt% sodium dodecyl-benzene sulfonate (SDBS) and balanced water were synthesised in a facile process. The MDD with 40 μm-thick pure titanium was carried out using the lubricants with varying concentrations of 0.5, 1.0 and 2.0 wt%. The results show that the formability of micro cups could be significantly improved when the nanolubricants are applied. Especially, the use of 1.0 wt% TiO2 nanolubricant demonstrates the best lubrication performance by significantly reducing the final drawing forces, and surface roughness, and the wrinkles by up to 24.2%, 12.55% and 4.82%, respectively. The lubrication mechanisms including the ball bearing and mending effects of NPs on open lubricant pockets (OLPs) and close lubricant pockets (CLPs) areas were then revealed through microstructure observation.

Funding

Australian Research Council (DP190100408)

History

Journal title

Lubricants

Volume

10

Issue

11

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC