University of Wollongong
Browse

File(s) not publicly available

Long-Term Self-Healing Efficiency of Bioconcrete Based on Integrated Sulfate- and Nitrate-Reducing Bacterial Granules

journal contribution
posted on 2024-11-17, 15:38 authored by Kirthi Chetty, Ulf Garbe, Timothy McCarthy, Faisal Hai, Guangming Jiang
This study evaluated the mechanical properties and self-healing performance of freshly casted and 19-month-aged bioconcrete samples with integrated sulfate-reducing bacteria (SRB) and nitrate-reducing bacteria (NRB) granules that were cultivated in an upflow anaerobic sludge blanket (UASB) reactor with synthetic wastewater. The 28-day compressive strength fulfilled the design requirement of 50 MPa. The apparent volume of permeable voids (AVPV) of fresh and aged bioconcrete met the limit of 13%. The self-healing ability was determined by exposing cracked bioconcrete to water media such as glucose, calcium acetate, tap water, and wastewater, which have shown calcite deposition in fresh and aged samples. The highest amount of calcite deposition was seen on fresh samples after glucose exposure (420 μm) and on aged bioconcrete after calcium acetate exposure (320 μm). Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS/XRD) results demonstrated that SRB/NRB granules survived mortar integration and deposition of calcite in both fresh and aged samples. The water permeability and acid resistance of bioconcrete samples were correlated to the amount of deposited calcite.

Funding

Australian Research Council (DE170100694)

History

Journal title

Journal of Materials in Civil Engineering

Volume

35

Issue

9

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC