University of Wollongong
Browse

Loading dynamics of a sliding DNA clamp

Download (1.24 MB)
journal contribution
posted on 2024-11-14, 23:06 authored by Won-Ki Cho, Slobodan Jergic, Daehyung Kim, Nicholas DixonNicholas Dixon, Jong-Bong Lee
Sliding DNA clamps are loaded at a ss/dsDNA junction by a clamp loader that depends on ATP binding for clamp opening. Sequential ATP hydrolysis results in closure of the clamp so that it completely encircles and diffuses on dsDNA. We followed events during loading of an E. coli β clamp in real time by using single-molecule FRET (smFRET). Three successive FRET states were retained for 0.3 s, 0.7 s, and 9 min: Hydrolysis of the first ATP molecule by the γ clamp loader resulted in closure of the clamp in 0.3 s, and after 0.7 s in the closed conformation, the clamp was released to diffuse on the dsDNA for at least 9 min. An additional single-molecule polarization study revealed that the interfacial domain of the clamp rotated in plane by approximately 8° during clamp closure. The single-molecule polarization and FRET studies thus revealed the real-time dynamics of the ATP-hydrolysis-dependent 3D conformational change of the β clamp during loading at a ss/dsDNA junction.

History

Citation

Cho, W., Jergic, S., Kim, D., Dixon, N. E. & Lee, J. (2014). Loading dynamics of a sliding DNA clamp. Angewandte Chemie International Edition, 53 (26), 6768-6771.

Journal title

Angewandte Chemie

Volume

126

Issue

26

Pagination

6886-6889

Language

English

RIS ID

91147

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC