Liquid metal based triboelectric nanogenerator with excellent electrothermal and safeguarding performance towards intelligent plaster
journal contribution
posted on 2024-11-17, 16:17authored byLiping Gong, Tingting Xuan, Sheng Wang, Haiping Du, Weihua Li
Polymer-based self-powered wearable sensing devices are easily destroyed under harsh mechanical shocks which largely restricts the development of smart electronic device. Herein, a versatile liquid metal based triboelectric nanogenerator (LM-TENG) device was developed by integrating the shear stiffening elastomer (SSE) with liquid metal (LM) and electrothermal aluminum foil. Based on the electrostatic induction effect, LM-TENG showed the good capacity of harvesting energy. The output voltage and power of the LM-TENG reached to 22.29 V and 55.16 µW with 9 MΩ load resistance at the force and frequency of 40 N and 15 Hz. Besides, LM-TENG demonstrated excellent electrothermal performance by efficiently reaching 69.02 ℃ with the applied voltage of 1.5 V. Additionally, LM-TENG displayed safeguarding performance under quasi-static and dynamic damage by effectively decreasing the impact force from 2.86 to 0.72 kN, endowing the device with excellent anti-impact from sharp objects penetration loading. Moreover, the utility of LM-TENG as intelligent medical plaster with joule-heating, controllable stiffness, self-powering sensing and anti-impact performance was further studied, providing a new strategy for designing multifunctional sensor, and paving the way for intelligent wearable electronics, personal healthcare and safeguards in the future.