University of Wollongong
Browse

Lead-free piezoceramic macro-fiber composite actuators toward active vibration control systems

journal contribution
posted on 2024-11-17, 14:13 authored by Binquan Wang, Geng Huangfu, Jie Wang, Shujun Zhang, Yiping Guo
Macro-fiber composite actuators (MFCAs) suffer from strict restrictions on the utilization of lead-containing precursors due to growing environmental concerns. To address this issue, a novel lead-free MFCA based on potassium sodium niobate piezoceramics has been developed using the dice & fill method. The MFCA demonstrates large electric field-induced displacement (31.4 μm over -500‒1 500 V at 0.5 Hz), excellent frequency stability, and a strong linear relationship between the induced displacement and the external voltage amplitude. Meanwhile, unlike lead-based MFCA that requires superposition of a negative dc bias voltage to pursue higher output performance but risks depolarization, lead-free MFCA can achieve larger displacement by superimposing only a positive bias voltage. This device exhibits excellent reliability, maintaining a stable output over 105 electrical cycles. Additionally, a “back-to-back” coupled MFCA has been developed to regulate bidirectional displacement, making it suitable for various practical applications, including active vibration control. This approach has resulted in a 90% vibration reduction and provides new insights into the design of MFCAs, further facilitating their application in active vibration control systems.

Funding

National Natural Science Foundation of China (20JC1415000)

History

Journal title

Journal of Materiomics

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC