University of Wollongong
Browse

File(s) not publicly available

Large-strain vacuum-assisted consolidation with non-Darcian radial flow incorporating varying permeability and compressibility

journal contribution
posted on 2024-11-16, 02:25 authored by Buddhima Indraratna, Rui Zhong, Patrick Fox, Cholachat Rujikiatkamjorn
A numerical solution has been developed for large-strain consolidation incorporating non-Darcian (nonlinear) radial flow with varying compressibility and permeability coefficients. The solution can accommodate both conventional fill surcharge as well as vacuum preloading. The smear effect caused by mandrel-driven vertical drains is also captured in the analysis. The proposed model is verified by comparing it with FEM simulation, existing laboratory data, other existing theoretical solutions, and its advantage of capturing the multiple factors influencing radial drainage and consolidation is demonstrated. The effects of non-Darcian flow are found to be significant for obtaining an accurate solution, unlike numerous past solutions that are based on linear Darcy flow. The salient finding of this study is that the conventional small-strain theory can overestimate the rate of consolidation with radial drainage, especially for highly compressible soils such as estuarine clays under substantial preloading pressures. It is also found that a considerable difference (larger than 5%) between large-strain and small-strain solutions inevitably occurs once the vertical strain exceeds approximately 15%, which can be regarded as a threshold beyond which the large-strain analysis becomes increasingly important. The proposed model is applied to a case study at Ballina Bypass (NSW, Australia), where prefabricated vertical drains have been installed in soft estuarine clay subjected to a combination of fill surcharge and vacuum preloading.

Funding

Performance of Soft Clay Consolidated by Biodegradable and Geosynthetic Vertical Drains under Vacuum Pressure for Transport Infrastructure

Australian Research Council

Find out more...

History

Citation

Indraratna, B., Zhong, R., Fox, P. J. & Rujikiatkamjorn, C. (2017). Large-strain vacuum-assisted consolidation with non-Darcian radial flow incorporating varying permeability and compressibility. Journal Of Geotechnical And Geoenvironmental Engineering, 143 (1), 04016088-1-04016088-9.

Journal title

Journal of Geotechnical and Geoenvironmental Engineering

Volume

143

Issue

1

Language

English

RIS ID

112844

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC