University of Wollongong
Browse

Kinetics of the peritectic phase transformation: in-situ measurements and phase field modeling

Download (470.4 kB)
journal contribution
posted on 2024-11-15, 05:23 authored by Dominic Phelan, Mark Reid, Rian DippenaarRian Dippenaar
An experimental study has been conducted into the role of cooling rate on the kinetics of the peritectic phase transformation in a Fe-C alloy. The interfacial growth velocities of the peritectic phase transformation were measured in situ for cooling rates of 100, 50, and 10 K/min. In-situ observations were obtained using high-temperature laser scanning confocal microscopy (HTLSCM) in a concentric solidification configuration. The experimentally measured interface velocities of the liquid/austenite (L/γ) and austenite/delta-ferrite (γ/δ) interphase boundaries were observed to increase with higher cooling rates. A unique finding of this study was that as the cooling rate increased, there was a transition point where the L/γ interface propagated at a higher velocity than the γ/δ interface, contrary to the findings of previous researchers. Phase field modeling was conducted using a commercial multicomponent, multiphase package. Good correlation was obtained between model predictions and experimental observations in absolute values of interface velocities and the effect of cooling rate. Analysis of the simulated microsegregation in front of the L/γ and γ/δ interfaces as a function of cooling rate revealed the importance of solute pileup. This microsegregation plays a pivotal role in the propagation of interfaces; thus, earlier modeling work in which complete diffusion in the liquid phase was assumed cannot fully describe the rate of propagation of the L/γ and δ/γ interfaces during the course of the peritectic transformation.

History

Citation

Phelan, D. J., Reid, M. H. & Dippenaar, R. J. (2006). Kinetics of the peritectic phase transformation: in-situ measurements and phase field modeling. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 37 (3), 985-994.

Journal title

Metallurgical and Materials Transactions A

Volume

37

Issue

3

Pagination

985-994

Language

English

RIS ID

15827

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC