University of Wollongong
Browse

Killing Many Birds with One Stone: Single-Source to Multiple-Target Domain Adaptation for Extractive Question Answering

journal contribution
posted on 2024-11-17, 14:06 authored by Xun Yao, Junlong Ma, Xinrong Hu, Hailun Wang, Gang Huang, Lu Zhang, Jie Yang, Wanqing Li
Extractive Question Answering (EQA) is one of fundamental problems in Natural Language Understanding. This paper deals with the problem of transferring an EQA model trained on a single (probably large) dataset, known as a source, to multiple new and unlabeled datasets, known as targets. Specifically, a novel single-source to multiple-target domain adaptation method is proposed to address the cross-domain EQA task. The method forms the shared feature space across different domains via minimizing the training loss on the source and the feature discrimination loss between source and target samples, and importantly, a syntax alignment loss is also considered to regulate sample representations from the source-and-target domains. Experimental results on several highly-competitive EQA datasets demonstrate the proposed method outperforms state-of-the-art models by a large margin. Intensive ablation studies are also offered to examine the impact from the integration of source-target domains, investigate the model breakdown, and visualize the intermediate shared latent subspace.

Funding

University of Wollongong (888/008/268)

History

Journal title

Proceedings - 2023 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Autonomous and Trusted Vehicles, Scalable Computing and Communications, Digital Twin, Privacy Computing and Data Security, Metaverse, SmartWorld/UIC/ATC/ScalCom/DigitalTwin/PCDS/Metaverse 2023

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC