University of Wollongong
Browse

Iridium-based electrocatalysts for the acidic oxygen evolution reaction: engineering strategies to enhance the activity and stability

journal contribution
posted on 2024-11-17, 14:06 authored by Hongzhe Xu, Yun Han, Qilong Wu, Yi Jia, Qin Li, Xuecheng Yan, Xiangdong Yao
Proton exchange membrane water electrolyzers (PEMWEs) for water electrolysis have received tremendous attention due to their immediate response, high proton conductivity, and low ohmic losses and gas crossover rate. The design of high-performance, economical and long-term durable electrocatalysts in an acidic environment is still the bottleneck to realize the large-scale commercialization of PEMWEs. Iridium-based materials represent one of the most promising classes of oxygen evolution reaction (OER) catalysts due to their intrinsic stability in acid media over ruthenium-based counterparts. However, only a few innovative approaches have been developed for synthesizing iridium-based catalysts (IBCs) in the past decade, possibly due to achieving high activity is detrimental to the stability of IBCs. Accordingly, various engineering strategies of optimizing IBCs have been proposed to address this issue, including doping engineering, morphology engineering, crystal phase engineering and support engineering. Herein, a critical overview focusing on different synthesis and modulation strategies of IBCs is presented, based on an in-depth understanding of the relationship between electronic structures, charge redistribution and activity as well as stability of the electrocatalysts. In addition, the unprecedented achievements in PEMWEs are summarized. The reaction mechanisms and future perspectives are critically discussed to inspire more rational design of IBCs toward practical applications.

Funding

Australian Research Council (DP200103043)

History

Journal title

Materials Chemistry Frontiers

Language

English

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC