University of Wollongong
Browse

Investigation of the consequence of high-pressure CO 2 pipeline failure through experimental and numerical studies

Download (1.74 MB)
journal contribution
posted on 2024-11-15, 08:12 authored by Xiong LiuXiong Liu, Ajit Godbole, Cheng LuCheng Lu, Guillaume MichalGuillaume Michal, Valerie Linton
Transportation of Carbon Dioxide (CO 2 ) via high-pressure pipelines from source to storage site forms an important link in the Carbon Capture and Storage (CCS)chain. To ensure the safety of the operation, it is necessary to develop a comprehensive understanding of the consequences of possible pipeline failure. CO 2 is a hazardous substance and an accidental release may lead to catastrophic damage. This paper describes an experimental investigation of the dispersion of CO 2 in the atmosphere in a full-scale burst test of a pipeline containing high-pressure dense phase CO 2 . The experiment was carried out to simulate a CO 2 pipeline failure in the real world. The test rig consisted of a buried 85 m long, 610 mm diameter pipeline test section connected at either end to 116 m long reservoirs. An explosive charge detonated at test section half-length initiated a rupture in the pipe wall top surface, releasing the high-pressure contents. The atmospheric dispersion of the CO 2 following the explosive release was measured. The paper also describes Computational Fluid Dynamics (CFD)simulations of the dispersion of CO 2 following the release. The CFD models were validated against the experimental data. The models were then extended to estimate the consequence distances related to CO 2 dispersion following failure of longer pipelines of various diameters under different wind speeds and directions. Comparison of the results with prior studies was carried out.

History

Citation

Liu, X., Godbole, A., Lu, C., Michal, G. & Linton, V. (2019). Investigation of the consequence of high-pressure CO 2 pipeline failure through experimental and numerical studies. Applied Energy, 250 32-47.

Journal title

Applied Energy

Volume

250

Pagination

32-47

Language

English

RIS ID

135399

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC