University of Wollongong
Browse

Investigation of a seat suspension installed with compact variable stiffness and damping rotary magnetorheological dampers

journal contribution
posted on 2024-11-17, 16:59 authored by Lei Deng, Shuaishuai Sun, Matthew Christie, Donghong Ning, Shida Jin, Haiping Du, Shiwu Zhang, Weihua Li
Long-term vibration poses a threat to drivers’ health and affects their ride performance. Furthermore, large-magnitude vibration and sudden shocks may even result in end-stop impacts, raising the drivers’ injury risk. To reduce the vibration and avoid end-top impacts, this paper presents an innovative seat suspension installed with variable stiffness and variable damping (VSVD) rotary magnetorheological (MR) dampers. At first, a novel compact VSVD rotary MR damper was designed and prototyped for the suspension, making the suspension's stiffness and damping controllable. Then, with two identical VSVD MR dampers were installed, the prototyped seat suspension was characterised by an MTS test frame to verify its capabilities of variable stiffness and damping. A control strategy consisting of a nonlinear stiffness control and a no-jerk skyhook damping control was also designed. Finally, the vibration attenuation performance of the seat suspension was numerically and experimentally evaluated under three vibration excitations, i.e., harmonic excitation, bump excitation, and random excitation. Both numerical and experimental results indicate that the vibration control performance of the seat suspension can be significantly improved by the VSVD rotary MR dampers.

Funding

Australian Research Council (LP190100603)

History

Journal title

Mechanical Systems and Signal Processing

Volume

171

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC