University of Wollongong
Browse

Interactions of the gasotransmitters contribute to microvascular tone (Dys)regulation in the preterm neonate

Download (307.53 kB)
journal contribution
posted on 2024-11-15, 18:19 authored by Rebecca Dyson, Hannah K Palliser, Joanna L Latter, Megan KellyMegan Kelly, Grazyna Chwatko, Rafal Glowacki, Ian Wright
Background & Aims Hydrogen sulphide (H2S), nitric oxide (NO), and carbon monoxide (CO) are involved in transitional microvascular tone dysregulation in the preterm infant; however there is conflicting evidence on the interaction of these gasotransmitters, and their overall contribution to the microcirculation in newborns is not known. The aim of this study was to measure the levels of all 3 gasotransmitters, characterise their interrelationships and elucidate their combined effects on microvascular blood flow. Methods 90 preterm neonates were studied at 24h postnatal age. Microvascular studies were performed by laser Doppler. Arterial COHb levels (a measure of CO) were determined through co-oximetry. NO was measured as nitrate and nitrite in urine. H2S was measured as thiosulphate by liquid chromatography. Relationships between levels of the gasotransmitters and microvascular blood flow were assessed through partial correlation controlling for the influence of gestational age. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow and derive a theoretical model of their interactions. Results No relationship was observed between NO and CO (p = 0.18, r = 0.18). A positive relationship between NO and H2S (p = 0.008, r = 0.28) and an inverse relationship between CO and H2S (p = 0.01, r = -0.33) exists. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow. The model with the best fit is presented. Conclusions The relationships between NO and H2S, and CO and H2S may be of importance in the preterm newborn, particularly as NO levels in males are associated with higher H2S levels and higher microvascular blood flow and CO in females appears to convey protection against vascular dysregulation. Here we present a theoretical model of these interactions and their overall effects on microvascular flow in the preterm newborn, upon which future mechanistic studies may be based.

History

Citation

Dyson, R. M., Palliser, H. K., Latter, J. L., Kelly, M. A., Chwatko, G., Glowacki, R. & Wright, I. M. R. (2015). Interactions of the gasotransmitters contribute to microvascular tone (Dys)regulation in the preterm neonate. PLoS One, 10 (3), e0121621-1 - e0121621-15.

Journal title

PLoS ONE

Volume

10

Issue

3

Language

English

RIS ID

99888

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC