University of Wollongong
Browse

File(s) not publicly available

Innovative variable stiffness and variable damping magnetorheological actuation system for robotic arm positioning

journal contribution
posted on 2024-11-17, 14:01 authored by Lei Deng, Shuaishuai Sun, Matthew Daniel Christie, Wenxing Li, Donghong Ning, Haiping Du, Shiwu Zhang, Weihua Li
Overshoot and long settling time are two common problems of the positioning control for robotic arms. To solve the positioning control problems, an innovative variable stiffness and variable damping (VSVD) magnetorheological (MR) actuation system for robotic arms was designed, prototyped and evaluated in this paper. The system can reduce the overshoot and settling time of the robotic arm with less energy consumption by controlling the stiffness and damping of its VSVD unit. A robotic arm with the VSVD actuation system was developed and prototyped. In order to evaluate the performance of the system, a step route and a customised route were designed for the robotic arm system to trace. Under these two routes, the positioning control performances of the VSVD robotic arm were evaluated numerically and experimentally with the control modes of uncontrolled, VD, VS and VSVD, respectively. Both the numerical and experimental results demonstrated that the VSVD control mode works best in general with less overshoot, settling time and energy consumption, indicating that the proposed VSVD actuation system can serve as a good candidate to solve the positioning control problems of robotic arms.

Funding

Australian Research Council (LP190100603)

History

Journal title

Journal of Intelligent Material Systems and Structures

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC