University of Wollongong
Browse

Indefinite Kasparov modules and pseudo-Riemannian manifolds

Download (470.38 kB)
journal contribution
posted on 2024-11-15, 05:28 authored by Koenraad van den Dungen, Adam RennieAdam Rennie
We present a definition of indefinite Kasparov modules, a generalisation of unbounded Kasparov modules modelling non-symmetric and non-elliptic (e.g. hyperbolic) operators. Our main theorem shows that to each indefinite Kasparov module we can associate a pair of (genuine) Kasparov modules, and that this process is reversible. We present three examples of our framework: the Dirac operator on a pseudo-Riemannian spin manifold (i.e. a manifold with an indefinite metric); the harmonic oscillator; and the construction via the Kasparov product of an indefinite spectral triple from a family of spectral triples. This last construction corresponds to a foliation of a globally hyperbolic spacetime by spacelike hypersurfaces.

History

Citation

van den Dungen, K. & Rennie, A. (2016). Indefinite Kasparov modules and pseudo-Riemannian manifolds. Annales Henri Poincare, 17 (11), 3255-3286.

Journal title

Annales Henri Poincare

Volume

17

Issue

11

Pagination

3255-3286

Language

English

RIS ID

106456

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC