University of Wollongong
Browse

In situ polymerization design of a quasi-solid electrolyte enhanced by NMP additive for lithium metal batteries

journal contribution
posted on 2024-11-17, 16:06 authored by Shangjie Wang, Qiang Lv, Yutong Jing, Bo Wang, Dianlong Wang, Huakun Liu, Shixue Dou
Solid polymer electrolytes (SPEs) are considered one promising candidate for lithium metal batteries due to their high flexibility, low cost, and roll-to-roll scalability. However, conventional SPEs prepared via ex situ methods are confronted with challenges such as poor contact and high resistance at the electrode|SPE interface, as well as low ionic conductivity at room temperature. In this study, we developed a quasi-solid electrolyte (QSE) using an in situ polymerization approach, employing butyl acrylate as the monomer and incorporating NMP as an additive. Spectroscopic investigations and DFT calculations revealed that NMP tends to form an overleaf-structured [Li(NMP)3][TFSI] complex with LiTFSI, promoting lithium salt dissociation. Owing to this advantage, the QSE exhibits high room-temperature ionic conductivity (6.94 × 10−4 S cm−1) and an extensive electrochemical stability window (5.01 V vs. Li+/Li). Furthermore, the in situ polymerization method facilitates full contact at the interface, enhancing the interfacial stability and reducing the interface resistance, thus resulting in stable cycling of Li|Built-in QSE|Li symmetric cell for 1100 h at 0.1 mA cm−2. The assembled LiFePO4|Built-in QSE|Li cell also demonstrates excellent rate and long-term cycling performance. Our findings offer valuable insights into the interaction between organic additives and lithium salts and present a novel strategy for the development of polymer electrolytes.

Funding

National Natural Science Foundation of China (21903058)

History

Journal title

Energy Storage Materials

Volume

69

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC