University of Wollongong
Browse

File(s) not publicly available

Identification of a novel tetrameric structure for human apolipoprotein-D

journal contribution
posted on 2024-11-16, 03:20 authored by Claudia Kielkopf, Jason Low, Yee-Foong Mok, Surabhi Bhatia, Tony Palasovski, Aaron OakleyAaron Oakley, Andrew Whitten, Brett Garner, Simon BrownSimon Brown
Apolipoprotein-D is a 25 kDa glycosylated member of the lipocalin family that folds into an eight-stranded β-barrel with a single adjacent α-helix. Apolipoprotein-D specifically binds a range of small hydrophobic ligands such as progesterone and arachidonic acid and has an antioxidant function that is in part due to the reduction of peroxidised lipids by methionine-93. Therefore, apolipoprotein-D plays multiple roles throughout the body and is protective in Alzheimer's disease, where apolipoprotein-D overexpression reduces the amyloid-β burden in Alzheimer's disease mouse models. Oligomerisation is a common feature of lipocalins that can influence ligand binding. The native structure of apolipoprotein-D, however, has not been conclusively defined. Apolipoprotein-D is generally described as a monomeric protein, although it dimerises when reducing peroxidised lipids. Here, we investigated the native structure of apolipoprotein-D derived from plasma, breast cyst fluid (BCF) and cerebrospinal fluid. In plasma and cerebrospinal fluid, apolipoprotein-D was present in high-molecular weight complexes, potentially in association with lipoproteins. In contrast, apolipoprotein-D in BCF formed distinct oligomeric species. We assessed apolipoprotein-D oligomerisation using native apolipoprotein-D purified from BCF and a suite of complementary methods, including multi-angle laser light scattering, analytical ultracentrifugation and small-angle X-ray scattering. Our analyses showed that apolipoprotein-D predominantly forms a ∼95 to ∼100 kDa tetramer. Small-angle X-ray scattering analysis confirmed these findings and provided a structural model for apolipoprotein-D tetramer. These data indicate apolipoprotein-D rarely exists as a free monomer under physiological conditions and provide insights into novel native structures of apolipoprotein-D and into oligomerisation behaviour in the lipocalin family.

Funding

Lipidomics of vision

Australian Research Council

Find out more...

History

Citation

Kielkopf, C. S., Low, J. K. K., Mok, Y., Bhatia, S., Palasovski, T., Oakley, A. J., Whitten, A. E., Garner, B. & Brown, S. H. J. (2018). Identification of a novel tetrameric structure for human apolipoprotein-D. Journal of Structural Biology, 203 205-218.

Journal title

Journal of Structural Biology

Volume

203

Issue

3

Pagination

205-218

Language

English

RIS ID

128643

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC