University of Wollongong
Browse

Hydrogel with dual networks making reduced GO connection and orientation for a bi-directional thermal conductive film

journal contribution
posted on 2024-11-17, 16:38 authored by Jianyu Zhang, Yintao Zhang, Cheng Yang, Xueliang Jiang, Wensheng Tian, Yanyu Li, Runlu Liu, Zhixin Chen, Hui Pan, Shenmin Zhu
With the rapid development of modern electronic devices, materials having high thermal conductivities (TCs) both in in-plane and through-plane directions are specially needed for thermal management. Whereas, the construction of efficient thermal-conductive pathways in bi-directions is still a challenge. Herein, a facile gel-drying approach is developed, achieving the formation of bi-directional pathways with the assistance of a dual-network structure. During the process, cellulose nanocrystal (CNC) with a high intrinsic TC was mixed with gellable cellulose (CNF) to form CNF/2CNC dispersion which was then used as a matrix. Reduced graphene oxide (RGO) foam with a network structure was used as a filler. The RGO network was tightly wrapped by the formed CNF/2CNC cross-linking network, resulting in a hydrogel with a dual-network structure. After drying, the resultant RGO-foam-CNF/2CNC film not only has a long-range orientation path in the horizontal direction, but also maintained a connected path in the vertical direction. The resultant film with 18.5 wt% RGO exhibited high TCs of 14.06 W·m−1·K−1 and 2.47 W·m−1·K−1 simultaneous for in-plane and through-plane directions, which is 21.6 times and 9.88 times higher than those of a typical CNF film, respectively. This strategy offers a new avenue for the designs of soft, cuttable, environmentally friendly polymer composite films with high TCs in bi-directions.

Funding

National Natural Science Foundation of China (YG2023ZD18)

History

Journal title

Composites Part A: Applied Science and Manufacturing

Volume

175

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC