University of Wollongong
Browse

Homogeneous bent functions of degree n in 2n variables do not exist for n > 3

Download (211.94 kB)
journal contribution
posted on 2024-11-15, 04:03 authored by Tianbing XiaTianbing Xia, Jennifer SeberryJennifer Seberry, J Pieprzyk, C Charnes
We prove that homogeneous bent functions f : GF(2)2n —> GF(2) of degree n do not exist for n > 3. Consequently homogeneous bent functions must have degree < n for n > 3.

History

Citation

This article was originally published as Xia, T, Seberry, J, Pieprzyk, J and Charnes, C, Homogeneous bent functions of degree n in 2n variables do not exist for n > 3, Discrete Applied Mathematics, 142, 2004, 127-132. Original Elsevier journal available here.

Journal title

Discrete Applied Mathematics

Volume

142

Issue

1-3 SPEC. ISS.

Pagination

127-132

Language

English

RIS ID

11099

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC