University of Wollongong
Browse

Highly Oxidized Oxide Surface toward Optimum Oxygen Evolution Reaction by Termination Engineering

journal contribution
posted on 2024-11-17, 13:16 authored by Xiaoning Li, Liangbing Ge, Yumeng Du, Haoliang Huang, Yang Ha, Zhengping Fu, Yalin Lu, Wanli Yang, Xiaolin Wang, Zhenxiang Cheng
The oxygen evolution reaction (OER) is a critical step for sustainable fuel production through electrochemistry process. Maximizing active sites of nanocatalyst with enhanced intrinsic activity, especially the activation of lattice oxygen, is gradually recognized as the primary incentive. Since the surface reconfiguration to oxyhydroxide is unavoidable for oxygen-activated transition metal oxides, developing a surface termination like oxyhydroxide in oxides is highly desirable. In this work, we demonstrate an unusual surface termination of (111)-facet Co3O4 nanosheet that is exclusively containing edge-sharing octahedral Co3+ similar to CoOOH that can perform at approximately 40 times higher current density at 1.63 V (vs RHE) than commercial RuO2. It is found that this surface termination has an oxidized oxygen state in contrast to standard Co-O systems, which can serve as active site independently, breaking the scaling relationship limit. This work forwards the applications of oxide electrocatalysts in the energy conversion field by surface termination engineering.

Funding

Office of Science (AHY100000)

History

Journal title

ACS Nano

Volume

17

Issue

7

Pagination

6811-6821

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC