Heterostructured Mo2C–MoO2 as highly efficient catalyst for rechargeable Li–O2 battery
journal contribution
posted on 2024-11-15, 15:05 authored by Chang Wu, Yuyang Hou, Jicheng Jiang, Haipeng Guo, Hua LiuHua Liu, Jun ChenJun Chen, Jiazhao WangJiazhao Wang© 2020 Elsevier B.V. Li–O2 batteries has been widely investigated for its ultra-high capacity as next generation batteries. Nevertheless, some problems like sluggish kinetic reaction and instability hugely impede the practical use of Li–O2 batteries. In this work, Mo2C/MoO2@RGO heterostructures was fabricated by in-situ growth of Mo2C between MoO2 and RGO during calcination and being employed as cathode to explore the synergistic effect in Li–O2 batteries. As a result, Mo2C/MoO2@RGO exhibits good specific capacity with 2365 mAh g−1, high round-trip efficiency (89% at first cycle) and improved cycling performance. Density functional theory calculations indicated that the Mo2C/MoO2@RGO heterostructures have better capability of oxygen adsorption than sole constituent (Mo2C@RGO or MoO2@RGO), which triggers the formation of film-like amorphous discharge products, leading to lower overpotential and stable performance. Our study reveals the important role of heterostructures in Li–O2 batteries system and demonstrates a promising design strategy for heterostructured catalyst.
History
Citation
Wu, C., Hou, Y., Jiang, J., Guo, H., Liu, H., Chen, J. & Wang, J. (2020). Heterostructured Mo2C–MoO2 as highly efficient catalyst for rechargeable Li–O2 battery. Journal of Power Sources,Journal title
Journal of Power SourcesVolume
470Publisher website/DOI
Language
EnglishRIS ID
143391Usage metrics
Categories
Keywords
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC