University of Wollongong
Browse

HT2REP: A fair cross-chain atomic exchange protocol under UC framework based on HTLCs and TRE

journal contribution
posted on 2024-11-17, 16:26 authored by Tao Li, Peiyao Niu, Yilei Wang, Shengke Zeng, Xiaoying Wang, Willy Susilo
Cross-chain transactions between heterogeneous blockchain systems pose various challenges, encompassing atomicity, security, and fairness of the transactions. While Traditional Hash Time Lock Contracts (HTLCs) can achieve atomic cross-chain transactions, they exhibit fairness deficiencies in two aspects: firstly, the transaction initiator benefits from an American Option (AO) advantage, and secondly, the transaction responder may be incentivized to launch a Draining Attack (DA), both of which impact the fairness of cross-chain transactions. Because of significant fluctuations in the exchange rate of tokens held by both parties, cross-chain transactions often face timeout rollbacks, resulting in a diminished probability of successful transactions. To tackle these issues, we propose a novel atomic cross-chain exchange protocol—HT2REP. This protocol integrates Time Released Encryption (TRE), ShangMi 3 Hash function (SM3), and scalable smart contract technologies to enhance fairness within the traditional HTLCs protocol. Additionally, HT2REP ensures atomicity, security, and a heightened probability of success for cross-chain exchanges. Finally, we demonstrate that HT2REP is Universally Composable (UC) secure.

History

Journal title

Computer Standards and Interfaces

Volume

89

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC