University of Wollongong
Browse

Growth of width-controlled nanowires MnO2 from mesoporous carbon and investigation of their properties

Download (438.89 kB)
journal contribution
posted on 2024-11-15, 02:40 authored by Shenmin Zhu, Xiaolin WangXiaolin Wang, Wei Huang, Deyue Yan, Honghua Wang, Di Zhang
One-dimensional α-MnO2 nanowires with a controlled width of 10–20 nm have been developed by means of ultrasonic waves from mesoporous carbon using KMnO4 as the precursor. The formation mechanism has been proposed based on the results. A peak around 100 K was detected in the temperature-dependence of magnetization curve, indicating the ferromagnetic state in nanocomposite mesoporous carbon-MnO2, which is in agreement with the transition temperature found from the magnetization versus applied magnetic field curve. The magnetization versus temperature curve of the obtained MnO2 nanowires showed a magnetic transition at about 50 K, illustrating that a parasitic ferromagnetic component is composed on the antiferromagnetic structure of MnO2. The advantage of the method reported here is that phase-controlled synthesis of α-MnO2 nanowires was implemented regardless of pH, temperature, and types of ions in the reaction system. A major advantage of this approach is the efficient, fast, and reproducible control of width and the facile strategy to synthesize nanowires MnO2, in addition to the high purity of the resultant material.

History

Citation

Zhu, S, Wang, X, Huang, W, Yan, D, Wang, H & Zhang, D (2006), Growth of width-controlled nanowires MnO2 from mesoporous carbon and investigation of their properties, Journal of Materials Research, 21(11), pp. 2847-2854.

Journal title

Journal of Materials Research

Volume

21

Issue

11

Pagination

2847-2854

Language

English

RIS ID

18041

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC