University of Wollongong
Browse

Ground-based measurements of atmospheric NH3 by Fourier transform infrared spectrometry at Hefei and comparisons with IASI data

journal contribution
posted on 2024-11-17, 16:59 authored by Wei Wang, Cheng Liu, Lieven Clarisse, Martin Van Damme, Pierre François Coheur, Yu Xie, Changgong Shan, Qihou Hu, Youwen Sun, Nicholas Jones
Atmospheric ammonia (NH3) plays an important role in the formation of fine particulate matter, leading to severe environmental degradation and human health issues. In this work, ground-based Fourier transform infrared spectrometry (FTIR) observations are used to obtain the total columns of atmospheric NH3 at Hefei, China, from December 2016 to December 2020. After the presentation of the retrieval algorithm and uncertainty budget, we perform a spatio-temporal analysis of the dataset. Over the four years, NH3 columns have been increasing by 15.82% (2017–2018), 3.83% (2018–2019) and 3.68% (2019–2020). A clear seasonal cycle is observed, with the largest surface concentrations (12.93 ± 6.40 ppb) observed in June to August, and the lowest (4.08± 2.66 ppb) in November to January. The diurnal cycles of NH3 exhibit increased morning and afternoon concentrations. Interpretation of the diurnal cycles is difficult, however, the absence of a peak during rush hours, and the absence of correlation with CO and NO2 suggest that agriculture and not traffic is the main source of NH3 at Hefei. The polar plots of NH3 columns with wind and back trajectories of air masses calculated by the HYSPLIT model confirmed that agriculture was the dominant source of ammonia in four seasons, while urban anthropogenic emissions contributed to the high level of NH3 in summer over the Hefei site. We end this paper with a short validation exercise of NH3 columns retrieved from measurements of the IASI satellite data with the FTIR measurements over Hefei. Correlation coefficients (R) between the two datasets are 0.79 and 0.75 for IASI-A and IASI-B, with the slope of 0.96 and 1.10, respectively. The mean difference is −3.44 × 1015 and −3.96 × 1015 molec cm−2, with standard deviation of 7.16 × 1015 and 8.10 × 1015 molec cm−2, respectively. These results demonstrate the IASI and FTIR data, over Hefei, are in broad agreement.

Funding

Army Research Laboratory (DQGG0102)

History

Journal title

Atmospheric Environment

Volume

287

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC