To develop a carbon material derived from a green biomass source, this study investigated the production of a derivatized carbon material made from an industrial byproduct, litchi pericarp, through a hydrothermal reaction combined with a high-temperature heat treatment process, and its application in a new energy field was evaluated. Gratifyingly, in the field of sodium ion batteries, the material showed excellent electrochemical performance when evaluated as an anode: the material exhibited a high initial reversible capacity (336.4 mAh/g), an excellent retention rate (98.6%) after 120 cycles and good rate performance (183.2 mAh/g at 500 mA/g). The energy storage mechanism in the material was also determined. Moreover, for a fuel in direct carbon solid oxide fuel cells, the maximum power density was 239 mW/cm at 850 °C. When operating at a constant current density of 250 mA/cm , the cell also displayed a stable discharging voltage and platform, and the fuel utilization rate was 66%. As a promising green carbon material with high electrochemical performance, the developed litchi pericarp-derived carbon material shows great potential in the new energy industry. 2 2
Funding
Applied Basic Research Foundation of Yunnan Province (2017FB085)