University of Wollongong
Browse

Graphene-tailored molecular bonds for advanced hydrogen and lithium storage performance

journal contribution
posted on 2024-11-16, 05:16 authored by Yuqin Huang, Guanglin Xia, Jian Zhang, Zaiping GuoZaiping Guo, Xuebin Yu
The practical application of sodium alanate (NaAlH4) as a hydrogen and lithium storage material has attracted intensive attention. The high energy barrier for breaking the Al-H bonds of NaAlH4, however, remains a key challenge. Here, we report that graphene could act as an effective platform to tailor the metal-hydrogen bonds of NaAlH4through their favorable molecular interaction. Theoretical and experimental results confirm that graphene is capable of weakening the Al-H bonds of NaAlH4, thus facilitating the breaking and recombination of Al-H bonds towards advanced hydrogen and lithium storage performance. In addition, owing to this favorable interaction, a robust nanostructure composed of homogeneous NaAlH4nanoparticles with an average size of ~12 nm encapsulated in graphene nanosheets has been developed via a facile solvent evaporation induced deposition method with a tunable loading and distribution. The synergistic effects of the favorable molecular interaction between graphene and NaAlH4and the noticeable decrease in particle size significantly boost the hydrogen and lithium storage performances of NaAlH4. This method provides new avenues to tailoring the molecular bonds of metal hydrides for a new range of applications in various fields.

Funding

Nanostructured metal hydrides for practical hydrogen storage applications

Australian Research Council

Find out more...

History

Citation

Huang, Y., Xia, G., Zhang, J., Guo, Z. & Yu, X. (2019). Graphene-tailored molecular bonds for advanced hydrogen and lithium storage performance. Energy Storage Materials, 17 178-185.

Journal title

Energy Storage Materials

Volume

17

Pagination

178-185

Language

English

RIS ID

129409

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC