Genetic and morphological approach for western corn rootworm resistance management
journal contribution
posted on 2024-11-17, 15:47authored byMartina Kadoić Balaško, Katarina M Mikac, Hugo A Benítez, Renata Bažok, Darija Lemic
The western corn rootworm (WCR), is one of the most serious pests of maize in the United States. In this study, we aimed to find a reliable pattern of difference related to resistance type using population genetic and geometric morphometric approaches. To perform a detailed population genetic analysis of the whole genome, we used single nucleotide polymorphisms (SNPs) markers. For the morphometric analyses, hindwings of the resistant and non-resistant WCR populations from a laboratory in the US were used. Genetic results showed that there were some differences among the resistant US populations. The low value of pairwise FST = 0.0181 estimated suggests a lack of genetic differentiation and structuring among the putative populations genotyped. However, STRUCTURE analysis revealed three genetic clusters. Heterozygosity estimates (HO and HE) over all loci and populations were very similar. There was no exact pattern, and resistance could be found throughout the whole genome. The geometric morphometric results confirmed the genetic results, with the different genetic populations showing similar wing shape. Our results also confirmed that the hindwings of WCR carry valuable genetic information. This study highlights the ability of geometric morphometrics to capture genetic patterns and provides a reliable and low-cost alternative for preliminary estimation of population structure. The combined use of SNPs and geometric morphometrics to detect resistant variants is a novel approach where morphological traits can provide additional information about underlying population genetics, and morphology can retain useful information about genetic structure. Additionally, it offers new insights into an important and ongoing area of pest management on how to prevent or delay pest evolution towards resistant populations, minimizing the negative impacts of resistance.