University of Wollongong
Browse

Formation of buried 2D Aluminium Gallium Nitride structures with enhanced piezoelectric modulus by xenon ion implantation

journal contribution
posted on 2024-11-17, 16:57 authored by Holger Fiedler, Prasanth Gupta, Jérôme Leveneur, David RG Mitchell, Mitchell Nancarrow, John Kennedy
Two-Dimensional (2D) III-V nitrides are anticipated to exhibit exceptional material properties with wide-ranging technological significance. We report, ion beam synthesis of buried 2D Aluminium Gallium Nitride structures with enhanced piezoelectric modulus. We propose three criteria for the formation of 2D AlGaN layers by ion implantation. The 2D layers were synthesized by Xe implantation into epitaxially grown, strain-free Al0.5Ga0.5N thin films and their presence was confirmed by scanning transmission electron microscopy. Alternating planar and buckled 2D III-Nitride layers in conjunction with a rapid change of polarity of the buckled layer confirms the weak interaction between the individual layers. Rutherford backscattering, in conjunction with piezoelectric force microscopy was used to identify the optimum Xe dose to induce maximum enhancement of piezoelectric modulus. Our results are supported by X-ray diffraction to quantify the macroscopic strain of the implanted film and Monte-Carlo simulations of ion-solid interactions. Fabrication of this material on a large scale may lead to highly efficient energy harvesters, communication devices, power devices and photocatalytic water splitting technologies.

Funding

Australian Research Council (LE120100104)

History

Journal title

Applied Materials Today

Volume

30

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC