University of Wollongong
Browse

Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand

journal contribution
posted on 2024-11-17, 16:04 authored by Hamish Clarke, Rachael H Nolan, Victor Resco de Dios, Ross Bradstock, Anne Griebel, Shiva Khanal, Matthias M Boer
Levels of fire activity and severity that are unprecedented in the instrumental record have recently been observed in forested regions around the world. Using a large sample of daily fire events and hourly climate data, here we show that fire activity in all global forest biomes responds strongly and predictably to exceedance of thresholds in atmospheric water demand, as measured by maximum daily vapour pressure deficit. The climatology of vapour pressure deficit can therefore be reliably used to predict forest fire risk under projected future climates. We find that climate change is projected to lead to widespread increases in risk, with at least 30 additional days above critical thresholds for fire activity in forest biomes on every continent by 2100 under rising emissions scenarios. Escalating forest fire risk threatens catastrophic carbon losses in the Amazon and major population health impacts from wildfire smoke in south Asia and east Africa.

History

Journal title

Nature Communications

Volume

13

Issue

1

Language

English

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC