University of Wollongong
Browse

Flexural performance of circular concrete-filled double steel tubular members: Testing, modeling, and strength predictions

journal contribution
posted on 2024-11-17, 13:58 authored by Junchang Ci, Mizan Ahmed, Daxing Zhou, Liqun Hou, Shicai Chen
This paper presents experimental and numerical investigations on circular concrete-filled double steel tubular (CFDST) members under flexural load. Seven specimens including five CFDST specimens were tested and the test parameters included the effects of concrete compressive strength, the thickness of the steel tubes, and the diameter ratio on their flexural performance. The final failure modes, moment (M)-curvature (ϕ) curves, deflection curves of specimens, and distributions of section longitudinal strains were analyzed and reported in this study. A nonlinear finite element model (FEM) was then developed for the CFDST members. After successful validation in ultimate strengths and failure modes, parametric studies were performed by using the verified FEM. A simple formula for calculating the flexural capacity of CFDST members was proposed and compared against several design codes to investigate the design accuracy. Based on this study, it was found that the CFDST members exhibit ductile behavior under flexural load. Increasing the steel area, particularly for the outer tube improved the flexural capacities of the members. Furthermore, the existing design codes were found to be remarkably underestimating the moment capacities of CFDST members whereas the design formula proposed can predict the ultimate flexural capacity with reasonable accuracy.

Funding

National Natural Science Foundation of China (52278471)

History

Journal title

Structural Concrete

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC