University of Wollongong
Browse

Fault Diagnosis Using Kernel Principal Component Analysis for Hot Strip Mill

Download (1.02 MB)
journal contribution
posted on 2024-11-15, 09:27 authored by Fei Zhang, Shengyue Zong, Zhi Ling
In the field of hot rolling process monitoring, the activation of non-linear dynamic behaviour may render the procedure of fault diagnosis more difficult. Principal component analysis (PCA) is known as a popular method for diagnosis but as it is basically a linear method, it may pass over some useful non-linear features of the system behaviour. One possible extension of PCA is kernel PCA (KPCA), owing to the use of non-linear kernel functions that allow introduction of non-linear dependences between variables. The objective of this study is to address the problem of fault diagnosis (in terms of non-linear activation) in hot rolling automation system using a KPCA-based method. The detection is achieved by comparing the subspaces between the reference and a current state of the system through the concept of subspace angle. It is shown in this work that the exploitation of the measurements in the form of KPCA can effectively improve the detection results.

History

Citation

F. Zhang, S. Zong & Z. Ling, "Fault Diagnosis Using Kernel Principal Component Analysis for Hot Strip Mill," Journal of Engineering, vol. 2017, (9) pp. 527-535, 2017.

Journal title

The Journal of Engineering

Volume

2017

Issue

9

Pagination

527-535

Language

English

RIS ID

127929

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC