University of Wollongong
Browse

Fast and High-Strain Electrochemically Driven Yarn Actuators in Twisted and Coiled Configurations

journal contribution
posted on 2024-11-17, 15:21 authored by Shazed Aziz, Jose G Martinez, Bidita Salahuddin, Nils Krister Persson, Edwin WH Jager
Commercially available yarns are promising precursor for artificial muscles for smart fabric-based textile wearables. Electrochemically driven conductive polymer (CP) coated yarns have already shown their potential to be used in smart fabrics. Unfortunately, the practical application of these yarns is still hindered due to their slow ion exchange properties and low strain. Here, a method is demonstrated to morph poly-3,4-ethylenedioxythiophene:poly-styrenesulfonate (PEDOT:PSS) coated multifilament textile yarns in highly twisted and coiled structures, providing >1% linear actuation in <1 s at a potential of +0.6 V. A potential window of +0.6 V and –1.2 V triggers the fully reversible actuation of a coiled yarn providing >1.62% strain. Compared to the untwisted, regular yarns, the twisted and coiled yarns produce >9× and >20× higher strain, respectively. The strain and speed are significantly higher than the maximum reported results from other electrochemically operated CP yarns. The yarn's actuation is explained by reversible oxidation/reduction reactions occurring at CPs. However, the helical opening/closing of the twisted or coiled yarns due to the torsional yarn untwisting/retwisting assists the rapid and large linear actuation. These PEDOT:PSS coated yarn actuators are of great interest to drive smart textile exoskeletons.

Funding

Stiftelsen Promobilia (F17603)

History

Journal title

Advanced Functional Materials

Volume

31

Issue

10

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC