University of Wollongong
Browse

File(s) not publicly available

Expression might be enough: representing pressure and demand for reinforcement learning based traffic signal control

journal contribution
posted on 2024-11-17, 13:42 authored by Liang Zhang, Qiang Wu, Jun Shen, Linyuan Lü, Bo Du, Jianqing Wu
Many studies confirmed that a proper traffic state representation is more important than complex algorithms for the classical traffic signal control (TSC) problem. In this paper, we (1) present a novel, flexible and efficient method, namely advanced max pressure (Advanced-MP), taking both running and queuing vehicles into consideration to decide whether to change current signal phase; (2) inventively design the traffic movement representation with the efficient pressure and effective running vehicles from Advanced-MP, namely advanced traffic state (ATS); and (3) develop a reinforcement learning (RL) based algorithm template, called Advanced-XLight, by combining ATS with the latest RL approaches, and generate two RL algorithms, namely”Advanced-MPLight” and”Advanced-CoLight” from Advanced-XLight. Comprehensive experiments on multiple real-world datasets show that: (1) the Advanced-MP outperforms baseline methods, and it is also efficient and reliable for deployment; and (2) Advanced-MPLight and Advanced-CoLight can achieve the state-of-the-art.

Funding

National Natural Science Foundation of China (11622538)

History

Journal title

Proceedings of Machine Learning Research

Volume

162

Pagination

26645-26654

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC