University of Wollongong
Browse

Estimation of vessel emissions inventory in Qingdao port based on big data analysis

Download (1.08 MB)
journal contribution
posted on 2024-11-15, 17:08 authored by Xing Sun, Zhe Tian, Reza Malekian, Zhixiong Li
Exhaust emissions from vessels have increasingly attracted attention in the continuously growing marine transport world trade market. The International Maritime Organization (IMO) has introduced a number of measures designed to reduce exhaust emissions from global shipping. As one of the busiest ports in the world, Qingdao port has been studied to propose possible support to the development of efficient emission reduction. In this study, a large amount data of emissions inventory in Qingdao port was used to predict its annual exhaust emissions, and hence, to help understand maritime pollution in Qingdao port. Bigdata analysis methodology was employed to perform accurate predictions on vessel emissions. The analysis results show that the emissions were dominated by container ships, oil tankers, and bulk cargo ships. The comparison between Qingdao port and other ports in emission control areas demonstrates the necessity of control measures for exhaust emissions. The adoption of shore power and efficient cargo handling seems to be a potential solution to reduce exhaust emissions. The findings of this study are meaningful for maritime safety administration to understand the current emission situation in Qingdao port, propose corresponding control measures, and perform pollution prevention.

History

Citation

Sun, X., Tian, Z., Malekian, R. & Li, Z. (2018). Estimation of vessel emissions inventory in Qingdao port based on big data analysis. Symmetry, 10 (10), 452-1-452-11.

Journal title

Symmetry

Volume

10

Issue

10

Language

English

RIS ID

131619

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC