University of Wollongong
Browse

Enhancement of the magnetic interfacial exchange energy at a specific interface in NiFe/CoO/Co trilayer thin films via ion-beam modification

Download (2.4 MB)
journal contribution
posted on 2024-11-15, 14:41 authored by David CortieDavid Cortie, Y W Ting, Pei-Shi Chen, X Tan, Ko-Wei Lin, Frank Klose
A series of ferromagnetic Ni80Fe20(55 nm)/antiferromagnetic CoO (25 to 200 nm)/ferromagnetic Co (55 nm)/SiO2(substrate) trilayer thin films were fabricated by ion-beam assisted deposition in order to understand the role of ion beam modification on the interfacial and interlayer coupling. The microstructural study using transmission electron microscopy, X-ray reflectometry, and polarised neutron reflectometry showed that ion-beam modification during the deposition process led to an oxygen-rich Co/CoO nanocomposite interface region at the bottom layer. This interface caused a high exchange bias field for the ferromagnetic cobalt. However, the exchange bias for top permalloy ferromagnet remained low, in line with expectations from the literature for the typical interfacial energy. This suggest that the ion-beam enhancement of the magnetic exchange bias is localized to the Co/CoO interface where local microstructural effects provide the dominant mechanism.

History

Citation

Cortie, D. L., Ting, Y., Chen, P., Tan, X., Lin, K. & Klose, F. (2014). Enhancement of the magnetic interfacial exchange energy at a specific interface in NiFe/CoO/Co trilayer thin films via ion-beam modification. Journal of Applied Physics, 115 (17), 073901-1-073901-7.

Journal title

Journal of Applied Physics

Volume

115

Issue

7

Language

English

RIS ID

88070

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC