University of Wollongong
Browse

File(s) not publicly available

Engineering Carbon Materials for Electrochemical Oxygen Reduction Reactions

journal contribution
posted on 2024-11-17, 15:43 authored by Liangxu Lin, Naihua Miao, Gordon G Wallace, Jun Chen, Dan A Allwood
The electrochemical oxygen reduction reaction (ORR) is the key energy conversion reaction involved in fuel cells, metal-air batteries, and hydrogen peroxide production. Proliferation and improvement of the ORR requires wider use of new and existing high performance catalysts; unfortunately, most of these are still based on precious metals and become uneconomical in mass-use applications. Recent progress suggests that low cost and durable carbon materials can potentially be developed as efficient ORR catalysts. Significant efforts have been made in discovering fundamental catalytic mechanisms and engineering techniques to guide and enable viable regulation of both the ORR activity and selectivity of these carbon catalysts. Starting from the fundamental understanding, this report reviews recent progress in engineering carbon materials from exotic chemical doping to intrinsic geometric defects for improved ORR. On the basis of both theoretical and experimental investigations reported so far in this area, future improvements in carbon catalysts are also discussed, providing useful pathways for more efficient and reliable energy conversion technologies.

Funding

Australian National Fabrication Facility (CE140100012)

History

Journal title

Advanced Energy Materials

Volume

11

Issue

32

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC