University of Wollongong
Browse

Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan

Download (898.83 kB)
journal contribution
posted on 2024-11-14, 15:08 authored by Ali Aldalbahi, Peter in het PanhuisPeter in het Panhuis
The electrical and mechanical characteristics of composite materials prepared using evaporative casting and vacuum filtration of carbon nanotubes (CNTs) dispersed in the biopolymer s-carrageenan (IC) are reported. It is demonstrated that the contact angle of water with films is proportional to the CNT mass and volume fraction, which is used to compare the properties of buckypapers with those of evaporative cast films. Multi-walled carbon nanotube films were found to exhibit higher conductivity values compared to those observed for single-walled carbon nanotubes composites at comparable contact angle values up to true nanotube volume fraction of 0.12. Buckypapers prepared by varying the absolute amount of CNT mass while keeping the IC amount of mass constant, were found to be more robust and conducting compared to evaporative cast films. In contrast, buckypapers prepared by changing the amount of IC mass while keeping the CNT amount of mass constant were found to be more conducting, but less robust compared to evaporative cast films. It is suggested that the electrical characteristics of these gel-carbon nanotube materials are determined by the relative amounts of mass (or volume) of CNTs and polymer, while the mechanical characteristics are governed by the absolute amounts of mass (or volume).

History

Citation

Aldalbahi, A. & in het Panhuis, M. (2012). Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan. Carbon, 50 (3), 1197-1208.

Journal title

Carbon

Volume

50

Issue

3

Pagination

1197-1208

Language

English

RIS ID

47870

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC