University of Wollongong
Browse

Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting

Download (2.7 MB)
journal contribution
posted on 2024-11-16, 05:35 authored by Yanna Guo, Jing Tang, Zhongli Wang, Yong-Mook Kang, Yoshio BandoYoshio Bando, Yusuke Yamauchi
Low efficiency, short lifetimes, and limited kinds of catalysts are still three fundamental shortcomings that have plagued electrochemical water splitting. Herein, we rationally synthesized a cost-effective Co 3 S 4 @MoS 2 hetero-structured catalyst that has proven to be a highly active and stable bifunctional catalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline environment. The heterostructure was obtained via a first hydrothermal approach to obtain hollow Co 3 S 4 nanoboxes based on the ionic exchange reaction between Fe(CN) 6 3− of Co-Fe Prussian blue analogue (PBA) and S 2− at 120 °C, and the subsequent in situ growth of MoS 2 nanosheets on the surface of Co 3 S 4 nanoboxes at an elevated temperature of 200 °C. The synergistic effects between the active and stable HER catalyst of MoS 2 and the efficient OER catalyst of Co 3 S 4 , as well as the morphological superiority of hollow and core-shell structures, endow Co 3 S 4 @MoS 2 with remarkable electrocatalytic performance and robust durability toward overall water splitting. As a result, the designed non-noble electrocatalyst of Co 3 S 4 @MoS 2 exhibits a low overpotential of 280 mV for OER and 136 mV for HER at a current density of 10 mA cm −2 in an alkaline solution. Meanwhile, a low cell voltage of 1.58 V is achieved by using the heterostructure as both anode and cathode catalysts. This work paves the way to the design and construction of other prominent electrocatalysts for overall water splitting.

Funding

All-Metal Nanoporous Materials as Highly Active Electrocatalysts

Australian Research Council

Find out more...

History

Citation

Guo, Y., Tang, J., Wang, Z., Kang, Y., Bando, Y. & Yamauchi, Y. (2018). Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy, 47 494-502.

Journal title

Nano Energy

Volume

47

Pagination

494-502

Language

English

RIS ID

124977

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC