University of Wollongong
Browse

Efficient nanoarchitectonics of solid-electrolyte-interface for high-performance all-solid-state lithium metal batteries via mild fluorination on polyethylene oxide

journal contribution
posted on 2024-11-17, 16:33 authored by Jieqing Shen, Shuohan Liu, Dongyu Bian, Zhixin Chen, Hui Pan, Cheng Yang, Wensheng Tian, Yao Li, Lingti Kong, Hengdao Quan, Da Wei Wang, Shenmin Zhu
Polyethylene oxide (PEO) based polymer electrolytes is promising for all-solid-state lithium metal batteries (ASSLMBs). Solid-electrolyte-interface (SEI) layer formed between polymer electrolytes and lithium metal is crucial to inhibit lithium dendrites growth. Herein, mild fluorination on commercial PEO is engineered as an electrolyte for ASSLMBs, which shows an outstanding cycling stability. During this process, some C-H bonds in PEO chains are substituted with C-F bonds, resulting in the formation of fluorinated PEO (F-PEO) with a low fluorine content of 2.7 at.%. Fluorination alters the regularity of PEO chains, leading to an improved ion conductivity for F-PEO/LiTFSI. An unusual and stable SEI containing relatively high LiF content forms, which can inhibit lithium dendrites growth and boost the battery performance. Li/Li cell with F-PEO/LiTFSI delivers outstanding cycling stability over 2000 h at 0.1 mA cm-2. When matching with LiFePO4 cathode, the battery exhibits high capacity of 151.0 mAh g−1 and good cycling stability for 500 cycles (0.05% decay per cycle) at 0.5 C. Even at 1.0 C, the capacity of the battery keeps at 99.8 mAh g−1 after 900 cycles. This facile and low-cost strategy opens an avenue for ASSLMBs towards their commercial applications.

Funding

National Natural Science Foundation of China (YG2023ZD18)

History

Journal title

Electrochimica Acta

Volume

456

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC