University of Wollongong
Browse

Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study

Download (692.5 kB)
journal contribution
posted on 2024-11-14, 23:42 authored by Matthew Fraser, Jessie Short, Gary A Kendrick, Dianne McLean, John Keesing, Maria Byrne, M Julian Caley, Doug Clarke, Andrew DavisAndrew Davis, Paul Erftemeijer, Stuart Field, Sam Gustin-Craig, John M Huisman, Michael J Keough, Paul Lavery, Ray Masini, Kathryn McMahon, Kerrie Mengersen, Michael Rasheed, John Statton, Jim Stoddart, Paul Wu
Dredging can have significant impacts on benthic marine organisms through mechanisms such as sedimentation and reduction in light availability as a result of increased suspension of sediments. Phototrophic marine organisms and those with limited mobility are particularly at risk from the effects of dredging. The potential impacts of dredging on benthic species depend on biological processes including feeding mechanism, mobility, life history characteristics (LHCs), stage of development and environmental conditions. Environmental windows (EWs) are a management technique in which dredging activities are permitted during specific periods throughout the year; avoiding periods of increased vulnerability for particular organisms in specific locations. In this review we identify these critical ecological processes for temperate and tropical marine benthic organisms; and examine if EWs could be used to mitigate dredging impacts using Western Australia (WA) as a case study. We examined LHCs for a range of marine taxa and identified, where possible, their vulnerability to dredging. Large gaps in knowledge exist for the timing of LHCs for major species of marine invertebrates, seagrasses and macroalgae, increasing uncertainty around their vulnerability to an increase in suspended sediments or light attenuation. We conclude that there is currently insufficient scientific basis to justify the adoption of generic EWs for dredging operations in WA for any group of organisms other than corals and possibly for temperate seagrasses. This is due to; 1) the temporal and spatial variation in the timing of known critical life history stages of different species; and 2) our current level of knowledge and understanding of the critical life history stages and characteristics for most taxa and for most areas being largely inadequate to justify any meaningful EW selection. As such, we suggest that EWs are only considered on a case-by-case basis to protect ecologically or economically important species for which sufficient location-specific information is available, with consideration of probable exposures associated with a given mode of dredging.

History

Citation

Fraser, M. W., Short, J., Kendrick, G., McLean, D., Keesing, J., Byrne, M., Caley, M., Clarke, D., Davis, A. R., Erftemeijer, P. L. A., Field, S., Gustin-Craig, S., Huisman, J., Keough, M., Lavery, P. S., Masini, R., McMahon, K., Mengersen, K., Rasheed, M., Statton, J., Stoddart, J. & Wu, P. (2017). Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study. Ecological Indicators, 78 229-242.

Journal title

Ecological Indicators

Volume

78

Pagination

229-242

Language

English

RIS ID

113299

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC