University of Wollongong
Browse

Effects of boron content on microstructure and wear properties of FeCoCrNiBx high-entropy alloy coating by laser cladding

Download (2.35 MB)
journal contribution
posted on 2024-11-15, 17:49 authored by Dezheng Liu, Jing Zhao, Yan Li, Wenli Zhu, Liangxu Lin
The FeCoCrNiBx high-entropy alloy (HEA) coatings with three different boron (B) contents were synthesized on Q245R steel (American grade: SA515 Gr60) by laser cladding deposition technology. Effects of B content on the microstructure and wear properties of FeCoCrNiBx HEA coating were investigated. In this study, the phase composition, microstructure, micro-hardness, and wear resistance (rolling friction) were investigated by X-ray diffraction (XRD), a scanning electron microscope (SEM), a micro hardness tester, and a roller friction wear tester, respectively. The FeCoCrNiBx coatings exhibited a typical dendritic and interdendritic structure, and the microstructure was refined with the increase of B content. Additionally, the coatings were found to be a simple face-centered cubic (FCC) solid solution with borides. In terms of mechanical properties, the hardness and wear resistance ability of the coating can be enhanced with the increase of the B content, and the maximum hardness value of three HEA coatings reached around 1025 HV0.2, which is higher than the hardness of the substrate material. It is suggested that the present fabricated HEA coatings possess potentials in application of wear resistance structures for Q245R steel.

History

Citation

Liu, D., Zhao, J., Li, Y., Zhu, W. & Lin, L. (2020). Effects of boron content on microstructure and wear properties of FeCoCrNiBx high-entropy alloy coating by laser cladding. Applied Sciences, 10 (1), 49-1-49-11.

Journal title

Applied Sciences (Switzerland)

Volume

10

Issue

1

Language

English

RIS ID

141595

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC