Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDF-based CO 2 retrievals from GOSAT
journal contribution
posted on 2024-11-14, 16:21 authored by Sergey Oshchepkov, Andrey Bril, Tatsuya Yokota, Isamu Morino, Yukio Yoshida, Tsuneo Matsunaga, Dmitry Belikov, Debra Wunch, Paul Wennberg, Geoffrey Toon, Christopher O'Dell, André Butz, Sandrine Guerlet, Austin Cogan, Hartmut Boesch, Nawo Eguchi, Nicholas DeutscherNicholas Deutscher, David GriffithDavid Griffith, Ronald Macatangay, Justus Notholt, Ralf Sussmann, Markus Rettinger, Vanessa Sherlock, John Robinson, Esko Kyro, Pauli Heikkinen, Dietrich G Feist, Tomoo Nagahama, Nikolay Kadygrov, Shamil Maksyutov, Osamu Uchino, Hiroshi WatanabeThis report describes a validation study of Greenhouse gases Observing Satellite (GOSAT) data processing using ground-based measurements of the Total Carbon Column Observing Network (TCCON) as reference data for column-averaged dry air mole fractions of atmospheric carbon dioxide (X CO2). We applied the photon path length probability density function method to validate X CO2 retrievals from GOSAT data obtained during 22months starting from June 2009. This method permitted direct evaluation of optical path modifications due to atmospheric light scattering that would have a negligible impact on ground-based TCCON measurements but could significantly affect gas retrievals when observing reflected sunlight from space. Our results reveal effects of optical path lengthening over Northern Hemispheric stations, essentially from May-September of each year, and of optical path shortening for sun-glint observations in tropical regions. These effects are supported by seasonal trends in aerosol optical depth derived from an offline three-dimensional aerosol transport model and by cirrus optical depth derived from space-based measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. Removal of observations that were highly contaminated by aerosol and cloud from the GOSAT data set resulted in acceptable agreement in the seasonal variability of X CO2 over each station as compared with TCCON measurements. Statistical comparisons between GOSAT and TCCON coincident measurements of CO 2 column abundance show a correlation coefficient of 0.85, standard deviation of 1.80ppm, and a sub-ppm negative bias of -0.43ppm for all TCCON stations. Global distributions of monthly mean retrieved X CO2 with a spatial resolution of 2.5° latitude×2.5° longitude show agreement within∼2.5°ppm with those predicted by the atmospheric tracer transport model. © 2012 American Geophysical Union. All Rights Reserved
History
Citation
Oshchepkov, S., Bril, A., Yokota, T., Morino, I., Yoshida, Y., Matsunaga, T., Belikov, D., Wunch, D., Wennberg, P., Toon, G., O'Dell, C., Butz, A., Guerlet, S., Cogan, A., Boesch, H., Eguchi, N., Deutscher, N., Griffith, D., Macatangay, R., Notholt, J., Sussmann, R., Rettinger, M., Sherlock, V., Robinson, J., Kyro, E., Heikkinen, P., Feist, D. G., Nagahama, T., Kadygrow, N., Maksyutov, S., Uchino, O. & Watanabe, H. (2012). Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDF-based CO 2 retrievals from GOSAT. Journal of Geophysical Research D: Atmospheres, 117 (12), 1-18.Journal title
Journal of Geophysical Research AtmospheresVolume
117Issue
12Pagination
1-18Publisher website/DOI
Language
EnglishRIS ID
60294Usage metrics
Categories
Keywords
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC