posted on 2024-11-14, 03:18authored byZhiping Xiong, Andrii Kostryzhev, Nicole Stanford, Elena PerelomaElena Pereloma
Conventional dual phase (DP) steel (0.08C-0.81Si-1.47Mn-0.03Al, wt. %) was manufactured by the laboratory simulation of strip casting. The effect of holding temperature and time on microstructure evolution was studied using a quench-deformation dilatometer. Microstructures were observed using optical and scanning electron microscopy. The results showed that the nose temperature of ferrite phase field is around 650 °C. The kinetics of ferrite formation is fast within the first 100 s of holding at this temperature, and then formation of ferrite continues at a slower rate until it reaches the fraction corresponding to that defined by the lever rule. 70~80 % ferrite was obtained after holding at 650 °C for 100~900 s. Some Widmänstatten ferrite was also observed probably because of a large prior austenite grain size and quenching after holding. In addition, austenite-to-ferrite transformation kinetics is fitted well using Johnson-Mehl-Avrami equation. The Avrami exponent for ferrite formation was approximately 1 for both 650 and 670 °C holding temperatures, which means rapid ferrite transformation. It deduces that the ferrite formation obeys a linear growth behavior, which is associated with a decrease in amount of nucleation sites.
History
Citation
Xiong, Z. P., Kostryzhev, A. G., Stanford, N. E. & Pereloma, E. V. (2014). Effect of holding temperature and time on ferrite formation in dual phase steel produced by strip casting. Materials Forum, 38 44-48.