University of Wollongong
Browse

Effect of gallium doping and ball milling process on the thermoelectric performance of n-type ZnO

Download (1016.76 kB)
journal contribution
posted on 2024-11-15, 05:57 authored by Priyanka Jood, Germanas PeleckisGermanas Peleckis, Xiaolin WangXiaolin Wang, Shi DouShi Dou
We report a systematic investigation of the thermoelectric properties of n-type Ga-doped ZnO synthesized using different ball milling conditions. Samples fabricated by the high-energy ball milling resulted in a highly dense layered structure with randomly distributed voids. These samples measured the lowest room temperature thermal conductivity, i.e., 27 W/mK due to increased phonon scattering. Furthermore, the Ga:ZnO system showed a metal–semiconductor transition above 300 K with transition temperature decreasing with increasing doping level. Measurement of the activation energy revealed the presence of one donor level around 3.9–7.8 meV and a deeper donor level around 15.4–18.1 meV below the conduction band for the Ga-doped samples. For Ga-doped ZnO, Seebeck coefficient of -185 lV/K (at 1000 K) was achieved, which is ;30–45% higher than the values previously reported for Zn:Ga system. Jonker plot analysis was used to analyze the scope of Ga:ZnO bulk system.

History

Citation

Jood, P., Peleckis, G., Wang, X. & Dou, S. Xue. (2012). Effect of gallium doping and ball milling process on the thermoelectric performance of n-type ZnO. Journal of Materials Research, 27 (17), 2278-2285.

Journal title

Journal of Materials Research

Volume

27

Issue

17

Pagination

2278-2285

Language

English

RIS ID

65151

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC