University of Wollongong
Browse

Effect of WC Content on Microstructure and Element Diffusion of Nano WC-Co-TiC/304 Stainless Steel Composites for Micro Drill

journal contribution
posted on 2024-11-17, 15:42 authored by Rui Zhu, Hongmei Zhang, Jianling Wang, Hongnan Li, Jinmeng Li, Zhisong Zhang, Yuchuan Zhu, Zhengyi Jiang
In this study, WC-Co-TiC/304 stainless steel composites were successfully prepared by compression at room temperature and vacuum sintering in a special mold. Through analysis and comparison of the microstructure, density, and particle size of WC-Co-TiC/304 stainless steel composite, the effects of different WC contents on the structure and properties of WC-Co-TiC were studied. The results show that among different WC contents when the WC content is 60%, the distribution of each structure is relatively uniform and fine, and the agglomeration of each structure is not obvious. The bonding effect of WC-Co-TiC cemented carbide and 304 stainless steel composite interface is the best. With the increase of WC content, the side defects of WC-Co-TiC cemented carbide increase gradually. When WC content is 60%, the best ratio is 1:1 of Co/TiC, as the density is 94.45%, the particle size of 0.2–0.3 μm is 38.9%, and the highest hardness of WC-Co-TiC cemented carbide side is 1370 HV0.1, but it is better when the ratio of Co/TiC is 3:2 at the composite interface, as the hardness value is 852 HV0.1 and the diffusion of Cr element is more uniform, while other elements have little difference.

Funding

National Natural Science Foundation of China (LJKZ0303)

History

Journal title

Metals

Volume

13

Issue

3

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC