University of Wollongong
Browse

Droplet microfluidics for kinetic studies of viral fusion

Download (877.55 kB)
journal contribution
posted on 2024-11-15, 18:49 authored by Samaneh Mashaghi, Antonius van OijenAntonius van Oijen
Viral infections remain a major threat to public health. The speed with which viruses are evolving drug-resistant mutations necessitates the further development of antiviral therapies with a large emphasis on drug discovery. To facilitate these efforts, there is a need for robust, high-throughput assays that allow the screening of large libraries of compounds, while enabling access to detailed kinetic data on their antiviral activity. We report here the development of a droplet-based microfluidic platform to probe viral fusion, an early critical step in infection by membrane-enveloped viruses such as HIV, Hepatitis C, and influenza. Using influenza A, we demonstrate the measurement of the kinetics of fusion of virions with target liposomes with sub-second temporal resolution. In analogy with acidification of the endosome that triggers fusion in a cellular context, we acidify the content of aqueous droplets containing virions and liposomes in situ by introducing acid from the dispersed phase and visualize the kinetics of fusion by using fluorescent probes.

History

Citation

Mashaghi, S. & van Oijen, A. M. (2016). Droplet microfluidics for kinetic studies of viral fusion. Biomicrofluidics, 10 (2), 024102-1 - 024102-8.

Journal title

Applied Physics Reviews

Volume

10

Issue

2

Language

English

RIS ID

105936

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC