University of Wollongong
Browse

Development of an In Situ Printing System With Human Platelet Lysate-Based Bio-Adhesive to Treat Corneal Perforations

journal contribution
posted on 2024-11-17, 15:20 authored by Jingjing You, Hannah Frazer, Sepidar Sayyar, Zhi Chen, Xiao Liu, Adam Taylor, Benjamin Filippi, Stephen Beirne, Innes Wise, Constantinos Petsoglou, Chris Hodge, Gordon Wallace, Gerard Sutton
Purpose: Corneal perforation is a clinical emergency that can result in blindness. Currently corneal perforations are treated either by cyanoacrylate glue which is toxic to corneal cells, or by using commercial fibrin glue for small perforations. Both methods use manual delivery which lead to uncontrolled application of the glues to the corneal surface. Therefore, there is a need to develop a safe and effective alternative to artificial adhesives.Methods: Previously, our group developed a transparent human platelet lysate (hPL)-based biomaterial that accelerated corneal epithelial cells healing in vitro. This biomate-rial was further characterized in this study using rheometry and adhesive test, and a two-component delivery system was developed for its application. An animal trial (5 New Zealand white rabbits) to compare impact of the biomaterial and cyanoacrylate glue (control group) on a 2 mm perforation was conducted to evaluate safety and efficacy.Results: The hPL-based biomaterial showed higher adhesiveness compared to commercial fibrin glue. Treatment rabbits had lower pain scores and faster recovery, despite generating similar scar-forming structure compared to controls. No secondary corneal ulcer was generated in rabbits treated with the bio-adhesive.Conclusions: This study reports an in situ printing system capable of delivering a hPL-based, transparent bio-adhesive and successfully treating small corneal perforations. The bio-adhesive-treated rabbits recovered faster and required no additional analgesia.

Funding

Australian Research Council (CE140100012)

History

Journal title

Translational Vision Science and Technology

Volume

11

Issue

6

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC