University of Wollongong
Browse

Design optimization and comparative analysis of silicon-nanowire-based couplers

Download (1.27 MB)
journal contribution
posted on 2024-11-15, 06:12 authored by Hongqiang Li, Xiaye Dong, Enbang LiEnbang Li, Zhihui Liu, Yaoting Bai
Three kinds of highly compact 2 x 2 couplers based on silicon nanowire are designed and optimized for the array waveguide grating (AWG) demodulation integration microsystem in this paper. These couplers are directional (X) coupler, cross gap coupler (CGC), and multimode interface (MMI) coupler. The couplers are simulated using the beam propagation method. The distance between the input/output waveguides is set to 10 μm considering the test of a single device in the following work. The total footprint of X coupler is 10 μmx 300 μm. The length of parallel film waveguide is 1 μm. After optimization, the minimum excess loss is 0.73 dB. CGC has a footprint of 10 μm x 300 μm , a coupling region length of 24 μm, and a minimum excess loss of 0.6 dB. Taper waveguides are used as input/output waveguides for MMI coupler. The footprint of MMI region is only 6 μm x 57 μm. The excess loss is 0.46 dB after optimization. Uniformity is 0.06 dB with transverse electric polarization when the center wavelength is 1.55 μm. The maximum excess loss is 1.55 dB in the range of 1.49 μm to 1.59 μm. The simulation results show that a small 2 x 2 MMI coupler exhibits lower excess loss, wider bandwidth, and better uniformity than X coupler and CGC. MMI coupler is suitable for the requirements of optoelectronic integration. 2012 IEEE.

History

Citation

Li, H., Dong, X., Li, E., Liu, Z. & Bai, Y. (2012). Design optimization and comparative analysis of silicon-nanowire-based couplers. IEEE Photonics Journal, 4 (5), 2017-2026.

Journal title

IEEE Photonics Journal

Volume

4

Issue

5

Pagination

2017-2026

Language

English

RIS ID

107910

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC