University of Wollongong
Browse

Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffraction

Download (2.33 MB)
journal contribution
posted on 2024-11-15, 14:54 authored by Saurabh Kabra, Kun Yan, David G Carr, Robert P Harrison, Rian DippenaarRian Dippenaar, Mark Reid, Klaus-Dieter LissKlaus-Dieter Liss
After α + β-zirconium has fully transformed into β-phase upon heating, the intensities of all β-Zr Bragg reflections decrease simultaneously as a function of time. It is shown that this effect represents a transition from the kinematic to the dynamic theory of diffraction due to the ever increasing crystal perfection driven by thermal recovery of the system. The best fitting coherent crystallite size of 30 μm and other microstructural features are verified by in situ laser scanning confocal microscopy. This effect of primary extinction in neutron diffraction has been employed to further investigate the crystal perfection kinetics. Upon further heating, crystal recovery is identified as a process of dislocation annihilation, suffering from lattice friction. Upon cooling, precipitating α-Zr induces strain into the perfect β-crystallites, re-establishing the kinematic diffraction intensities. An Avrami analysis leads to the estimations of nucleation time, consumption of nucleation sites and lower-dimensional growth. Such technique bears great value for further investigation on all metal systems annealed close to the melting temperature. © 2013 American Institute of Physics.

History

Citation

Kabra, S., Yan, K., Carr, D. G., Harrison, R. P., Dippenaar, R. J., Reid, M. & Liss, K. (2013). Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffraction. Journal of Applied Physics, 113 (6), 063513-1-063513-8.

Journal title

Journal of Applied Physics

Volume

113

Issue

6

Language

English

RIS ID

76071

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC